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The availability of complete genomic sequences and technologies
that allow comprehensive analysis of global expression profiles of
messenger RNA1–3 have greatly expanded our ability to monitor
the internal state of a cell. Yet biological systems ultimately need
to be explained in terms of the activity, regulation and modifi-
cation of proteins—and the ubiquitous occurrence of post-
transcriptional regulation makes mRNA an imperfect proxy for
such information. To facilitate global protein analyses, we have
created a Saccharomyces cerevisiae fusion library where each
open reading frame is tagged with a high-affinity epitope and
expressed from its natural chromosomal location. Through
immunodetection of the common tag, we obtain a census of
proteins expressed during log-phase growth and measurements
of their absolute levels. We find that about 80% of the proteome is
expressed during normal growth conditions, and, using
additional sequence information, we systematically identify mis-
annotated genes. The abundance of proteins ranges from fewer
than 50 to more than 106 molecules per cell. Many of these
molecules, including essential proteins and most transcription
factors, are present at levels that are not readily detectable by
other proteomic techniques nor predictable by mRNA levels or
codon bias measurements.

The diverse chemical nature of proteins makes the development
of globally applicable proteomic assays very challenging. We have
overcome this obstacle in the yeast S. cerevisiae by individually
tagging each of its annotated open reading frames (ORFs) with a

high-affinity epitope tag so that the resulting fusion proteins are
expressed under the control of their natural promoters. The fusion
library allows the immunodetection and immunopurification of
the entire yeast proteome using a single antibody, enabling the
development of a range of high-throughput functional assays. To
allow for the facile construction of epitope-tagged yeast fusion
libraries, we synthesized 6,234 pairs of ORF-specific oligonucleotide
primers. Each of the oligonucleotide pairs have shared 3 0 ends that
allow for polymerase chain reaction (PCR) amplification of a
common insertion cassette, as well as gene-specific 5 0 ends that
allow for the precise introduction, through homologous recombi-
nation, of the amplified insertion cassettes as a perfect in-frame
fusion at the carboxy-terminal end of the coding region of each
gene4 (Fig. 1a). The insertion cassettes contained the coding region

Figure 1 Tagging and detection of the yeast proteome. a, Schematic diagram of tagging

strategy. b, Detection of tagged proteins. Extracts containing TAP-fusion proteins were

prepared and analysed by western blots using an anti-CBP antibody (see Supplementary

Information). Immunodetection of an endogenous protein (hexokinase) provided a loading

control. Serial dilutions of TAP-tagged proteins provided an internal abundance

standard (right). c, Monitoring dynamic protein levels for two cell-cycle regulated proteins.

Strains expressing Clb2– and Sic1–TAP fusions were grown to log-phase and arrested in

G1 by a-factor treatment. The cell cycle was resumed by a-factor removal, aliquots were

taken at 7-min intervals and levels of the tagged proteins were quantified using

western blot analysis (filled circles). For comparison, we include mRNA levels of the two

proteins obtained by an earlier microarray analysis29 (open circles) as well as changes in

untagged Clb2 protein levels (open squares) obtained using an antibody against the

endogenous protein in an untagged strain.
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for a modified version of the tandem affinity purification (TAP)
tag5,6, which consists of a calmodulin binding peptide, a TEV
cleavage site and two IgG binding domains of Staphylococcus aureus
protein A, as well as a selectable marker (see Supplementary
Information). In total, we obtained successful integrants for 98%
of all ORFs annotated in the Saccharomyces genome database (as of
April 2001; http://www-genome.stanford.edu/Saccharomyces),
including 93% of all essential ORFs7 in haploid yeast.

Western blot analysis, using an antibody that specifically recog-
nizes the TAP tag, demonstrated that the large majority (.95%) of
detected fusion proteins migrate predominantly as a single band of
the approximate expected molecular mass (Fig. 1b). Furthermore,
analysis of two known cell-cycle-regulated proteins, Clb2 and
Sic18,9, indicated that the tagging does not hinder their regulated
proteolysis by the ubiquitin/proteasome degradation system and
that the TAP tag itself is rapidly destroyed during the targeted
degradation of the fusion protein (Fig. 1c). These and other data6

suggest that the function, regulation and stability of most, but not
all (see Supplementary Information), of the proteome is uncom-
promised by the fused tag.

We observed a protein product for 4,251 of the TAP-tagged ORFs
by comprehensive western blot analysis. This set of proteins shows
excellent overlap (.90%) with the set of green fluorescent protein
(GFP) fusion proteins detected by fluorescence microscopy10

(Fig. 2a), and together indicate that at least 4,517 proteins are
expressed during log-phase growth in rich media. We detect 79% of
all essential proteins and 83% of gene products corresponding to
ORFs with assigned gene names. By contrast, only 73% of all
annotated ORFs expressed a detectable protein product (Fig. 2b).
This discrepancy largely results from the presence of spurious ORFs
in the annotated yeast genome database stemming from well-known
difficulties in distinguishing actual coding regions from fortuitous

short ORFs11,12. For the original annotation of the yeast genome, an
arbitrary cut-off of 100 codons was used to qualify ORFs as
potential genes, leading to an anomalous peak centred between
100 and 150 amino acids in the sequence length distribution (Fig. 2c,
black)13 of the genome that is not present in the length distribution
of the subset of named genes (Fig. 2c, green). Importantly, although
we tagged and analysed all potential ORFs, the length distribution of
the subset of observed proteins did not contain the above artefactual
peak (Fig. 2c, red), indicating that our analysis of expressed
genes has a very low false-positive rate (see also Supplementary
Information).

A number of bioinformatics approaches, including recent ana-
lyses of the genomic sequences of a number of related yeast species,
have been used to distinguish between the real and misannoted
ORFs14–17, although the true number and identity of the spurious
ORFs remain unclear. Our results offer experimental verification for
a large number of hypothetical genes (we observed 1,018 protein
products belonging to functionally uncharacterized ORFs), and
yields a large, experimentally validated set to evaluate the success of
computational methods for identifying falsely annotated genes. By
combining a novel metric—termed the codon enrichment corre-
lation (CEC), which evaluates the patterns of codon usage in
potential ORFs—with our protein expression data, we identified a

Figure 2 Analysis of proteins expressed during log-phase growth. a, Venn diagram

comparing sets of proteins detected by western blot of TAP-tagged strains (red),

fluorescence microscopy of GFP-tagged strains10 (green) and both (yellow). b, Fraction of

the indicated set of ORFs observed in either the TAP-tagged or GFP-tagged libraries.

c, Size distribution of ORFs, binned by length using 50-codon intervals. The number of

ORFs per bin is plotted for the indicated sets of ORFs. d, Codon enrichment correlation

(CEC) distribution of small ORFs. CECs were calculated for ORFs with lengths from 100 to

150 codons. ORFs were binned according to CEC values using intervals of 0.05 units. The

number of ORFs in each bin is plotted for the indicated sets of ORFs. Note, observed

proteins have a positive CEC value characteristic of named genes, whereas unobserved

ORFs show a major peak centred near a zero value expected for random sequences.

Figure 3 Functional categorization of proteins expressed during log-phase growth in rich

medium. 33 modules of co-expressed, functionally related genes were identified by global

analysis of ,1,000 microarray data sets18,19. Plotted is the fraction of the ORFs in each

module that produced a detectable protein product by TAP western analysis or GFP

microscopy10 alone (grey), or both methods (black). Where possible, modules are

annotated by function. The gene composition of the modules can be obtained at

http://barkai-serv.weizmann.ac.il/modules/ using a cut-off threshold of 4.0. ‘Not

annotated1–6’ correspond to modules containing YHR025W, YER103W, YPL016W,

YPL180W, YER039C-A and YCL076W, respectively.
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set of 525 potentially spurious ORFs (listed in Supplementary
Information) that have codon compositions not characteristic
of genuine genes and did not yield detectable protein products
(Fig. 2d, Methods). On the basis of the CEC distribution of genuine
ORFs, we estimate that this list is contaminated by ,20 genuine
coding sequences. Our proteomics-based approach complements
the comparative genomics strategy for identifying spurious ORFs16.
The large majority (all but seven) of the 496 spurious ORFs
suggested by Kellis et al.16 were not observed in our TAP and GFP
studies. The set of spurious ORFs that we identified overlaps well
with those detected by this cross-species genome study (381 genes
were identified as spurious by both studies), and expands the set by
144 ORFs. Among these 144 ORFs are a large number of sequences
that overlap with real genes on the opposite strand, and therefore are
difficult to distinguish through homology analysis.

After discounting the spurious ORFs, there remain ,1,000
genuine coding regions that did not produce a detectable protein
product. To determine if the unobserved proteins belong to classes
of genes that are not transcribed during normal log-phase growth
conditions, we compared our results with global transcriptional
array data. A recent analysis of mRNA expression profiles from
,1,000 published microarray experiments allowed for the identi-
fication of 33 ‘modules’ of transcriptionally co-regulated genes18,19.
For modules that are expressed in log phase (for example, those
coding for housekeeping functions, such as ergosterol and amino-
acid biosynthesis and cell cycle), we were able to detect the large

majority of the protein products (Fig. 3). By contrast, modules
composed of genes involved in functions required only under
specialized conditions (for example, meiosis/sporulation and
alternative nitrogen utilization) generally produced few detectable
proteins.

We took advantage of the fact that all gene products were detected
using the same epitope/antibody interaction to measure the abso-
lute abundance of each of the tagged proteins using quantitative
western blot analyses. This effort was facilitated by the inclusion of
internal standards in each gel (Fig. 1b). We find that the levels of
different proteins show an enormous dynamic range, varying from
fewer than 50 to more than 106 molecules per cell (Fig. 4a, b). The
results show that previous efforts to quantify protein levels using
two-dimensional gel electrophoresis or mass spectrometry were
strongly biased towards the detection of abundant proteins (Fig. 4a,
see also Supplementary Fig. S3)20–23. For example, a recent study
using mass spectrometry and isotope labelling succeeded in quan-
titatively monitoring changes in the abundance of 688 yeast pro-
teins22. For the most abundant proteins (.50,000 molecules per
cell) the coverage was excellent (,60%), whereas for the 75% of the
proteome that is present at fewer than 5,000 molecules per cell, only
8% of the proteins were observed. Another mass-spectrometry
effort that focused on detecting, without directly quantifying, the
complement of proteins in log-phase yeast23 observed a larger
number (1,484) of proteins, although it was also biased towards
abundant proteins (90% of the proteome present at .50,000

Figure 4 Abundance distribution of the yeast proteome. a, Distribution of yeast proteins

observed by TAP/western-blot (red), liquid chromatography/mass spectrometry

multidimensional protein identification technology (LC/MS MudPIT) analysis focusing on

comprehensive detection23 (purple) and quantitative analysis22 (green), and combined

results from 2 two-dimensional (2D) gel analyses20,21 (blue). The bins are log2 increments

with upper boundaries indicated. b, Normalized abundance distribution of observed

proteins (red), essential proteins (purple) and transcription factors (dashed line). c, The

relationship between steady-state mRNA and protein levels. Top plot, abundance of each

protein is plotted against its mRNA level determined by microarray analysis25. Middle plot,

ORFs are sorted according to mRNA levels, and binned into successive groups with

cut-offs of 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10, 20, 50 and 100 molecules per

cell. For each bin, the mean protein abundance is plotted against the mean mRNA level.

Bottom plot, protein versus mRNA relationship for a subset of essential soluble proteins

(see Supplementary Information). Errors represent the standard deviation of three

measurements. d, Relationship between codon adaptation index (CAI) and protein levels.

Individual and averaged protein values are plotted against CAI27. In the middle plot, the

values are binned using CAI cut-offs of 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50,

0.60, 0.70, 0.80 and 1.0.
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molecules per cell was detected, whereas only 19% of the proteome
present at fewer than 5,000 molecules per cell was observed). Our
validated list of expressed proteins will help evaluate future
advances in mass spectrometry approaches24.

Overall, we observe a significant relationship between mRNA
levels, as measured by an earlier microarray analysis of log-phase
yeast25, and protein levels (Spearman rank correlation coefficient
r s ¼ 0.57). Very abundant mRNAs generally encode for abundant
proteins, and the average protein per mRNA ratio remains remark-
ably constant throughout the full range of mRNA abundances
(Fig. 4c, middle, and Supplementary Fig. S4). The average protein
per mRNA ratio is 4,800 using this measure of mRNA levels, and is
4,200 using an alternative mRNA abundance measurement based
on a microarray analysis comparing mRNA to genomic DNA
levels26 (Supplementary Fig. S4). However, individual genes with
equivalent mRNA levels can result in large differences in protein
abundances (Fig. 4c, top). To assess if this variability was primarily
caused by protein measurement error and/or disruption of protein
function by the TAP tag, we performed further triplicate measure-
ments of protein abundances on a subset of 206 essential, soluble
proteins (See Supplementary Information); the selected strains
grew robustly, showing that the tagged proteins were functional.
This subset also shows a high degree of protein to mRNA variability
relative to our measurement error, indicating that the large differ-
ences in individual protein to mRNA ratios are not due primarily to
noise in the protein abundance measurements or disruption of the
protein by the tag (Fig. 4c, bottom). However, the correlation
between mRNA and protein levels is somewhat greater
(r s ¼ 0.66), suggesting that the disruption of protein by the TAP
tag or difficulty in analysing membrane proteins may have con-
tributed to some of the variation. We also observed a significant
relationship (r s ¼ 0.55) between protein abundance and codon
usage as measured by the codon adaptation index (CAI)27. Protein
abundances drop rapidly for genes with CAI values ,0.2, explaining
the difficulty that previous proteomic approaches have typically had
in detecting these proteins22. But on an individual gene basis, there
is great variability that is also present in the subset of more carefully
measured essential, soluble proteins (Fig. 4d).

A number of observations support the argument that the full
range of abundances detected in this study, including the very low
expression levels, represent functionally significant amounts of the
proteins. First, the analysis of transcription modules (Fig. 3)
indicates that within groups of genes that are turned off during
log-phase growth the corresponding proteins are not observed, even
at residual levels. Second, the abundance distribution profile of the
entire yeast proteome (Fig. 4b, red) is similar to the profile of the
portion of the proteome whose function is required for survival
under standard growth conditions (Fig. 4b, purple). This suggests
that, in general, functional proteins are not under-represented
amongst low-abundance proteins. Third, there are entire classes
of functionally important proteins, such as transcription factors
(Fig. 4b, line) and cell-cycle proteins (Supplementary Fig. S5), that
are present at very low expression levels. Thus the low-abundance
proteins detected and quantified in the present study represent a
large and functionally important portion of the yeast proteome that
is almost entirely invisible to systematic quantitative analysis by
other proteomic methods.

The TAP-tagged library now makes it feasible to monitor dyna-
mically the abundance of the yeast proteome through basic cellular
events such as the cell cycle and meiosis, and will allow the
determination of protein lifetimes. In addition, important subsets
of proteins, such as transcription factors, can be readily studied
under a more comprehensive set of conditions. This protein-based
data will provide critical information for efforts to understand the
logic of cellular regulatory circuits, and, by comparison to mRNA
levels, the data will give insight into the nature and extent of post-
transcriptional regulation. A

Methods
Quantification of protein levels
Cultures (1.7 ml) of tagged strains were grown in 96-well format to log phase, and total cell
extracts were examined by SDS–polyacrylamide gel electrophoresis (PAGE)/western blot
analysis as described in Supplementary Information. The bands corresponding to the
tagged proteins were detected using chemiluminescence and a CCD camera (FluorChem
8800, Alpha Innotech). To control for variation in extraction and loading, each blot was
probed with an antibody against endogenous hexokinase in addition to the TAP-specific
anti-CBP antibody. Extracts whose hexokinase signals varied by greater than a factor of ,2
from the expected value were re-grown and re-analysed. A standard containing a mixture
of three TAP-tagged proteins (Pgk1, Cdc19, Rpl1A) were included in each gel at one-, ten-
and 100-fold dilutions. Proteins whose chemiluminescence signals were approaching
saturation were re-examined by performing the western blot analysis using a tenfold
dilution of the extract and/or lower exposure times during detection. Before the
quantitative SDS–PAGE/western blot analysis, strains were ordered on the basis of
estimates of TAP abundance from a preliminary dot-blot analysis. In order to provide a
standard for the conversion of western signals to absolute protein levels, a TAP-tagged
protein (Escherichia coli initiation factor A, INFA) was overexpressed in E. coli and purified
to homogeneity. Yeast extracts containing serial dilutions of INFA ranging from
500 attomoles (which was the limit of detection, see Supplementary Fig. S1) to
25 picomoles were run on a gel along with extracts from 25 different yeast TAP-tagged
strains representing the full range of observed protein signals (a second TAP-tagged
protein (initiation factor B) was also analysed to ensure that the observed TAP signal was
not influenced by the fusion protein). Comparison of the signals generated by these 25
proteins to the known standards allowed the creation of a conversion factor between the
observed western blot signals and absolute protein levels. Based on the number of cells
(,1 £ 107) used for the SDS–PAGE/western blot analysis, the protein levels were then
converted to measurements of protein molecules per cell.

In order to assess the error in our quantification, a set of 33 proteins with a range of
abundances were grown in duplicate cultures, separately extracted and analysed on
different gels. The replicate signals showed a linear correlation coefficient of R ¼ 0.94,
with the pairs of proteins having a median variation of a factor of 2.0. This error analysis
does not account for potential alterations in the endogenous levels of the proteins caused
by the fused tag, which may be particularly disruptive for small proteins (Supplementary
Information) or difficulty in analysing some polytopic membrane proteins by SDS–PAGE.
For dynamic measurements of protein levels (for example, the cell-cycle dependence of
Clb2 and Sic1 levels shown in Fig. 1c or triplicate measurements in Fig. 4c, d) much
smaller errors can be obtained by running the samples being compared side-by-side on a
single gel. For quantification in the triplicate measurements shown at the bottom of
Fig. 4c, d, serial dilutions of extracts containing purified TAP-tagged INFA were run on
each gel.

CEC and identification of spurious ORFs
Codon usage in genuine protein-coding regions deviates systematically from randomly
generated ORFs, owing to both preferences in amino-acid composition and biases in the
usage of synonymous codons28, and the codon enrichment correlation (CEC) provides a
measure of this deviation. To calculate CEC values, we first determined the relative
prevalence of the 61 amino acids specifying codons in the 3,753 named ORFs
(Supplementary Table S1). The codon usage expected in random sequences was then
calculated based on the approximate prevalence of 30% T, 30% A, 20% C and 20% G
nucleotides in the yeast genomes. The enrichment of each codon for the positive set is
given by dividing its prevalence among the named ORFs by its expected prevalence in
random sequences (Supplementary Table S1). Codon enrichments were similarly
calculated for each test ORF. The CEC is the linear correlation coefficient (r) between the
codon enrichments of the test ORF and the positive set (for examples, see Supplementary
Fig. S2). ORFs were designated as spurious if they failed to be detected by both the TAP and
GFP analyses, and they had CEC values below a cut-off of 0.25, 0.16, 0.07 or 0.06 for ORFs
of size 0–150, 151–200, 201–250 and 251–300 codons, respectively. For ORFs .150 amino
acids, these values were chosen so that ,4.5% of the ORFs falling below these cut-offs that
are not detected by the GFP or TAP analyses are genuine coding sequences. The number of
genuine coding sequences contaminating our list of spurious ORFs was estimated for each
size range and CEC cut-off by the following equation: N real ¼ NobsR, where Nobs is the
number of detected ORFs that have a CEC value below the cut-off, and R is the ratio of
unobserved to observed ORFs, as determined by the probability of detecting named ORFs
for the given size range.
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corrigendum

Invariant scaling relations across
tree-dominated communities

Brian J. Enquist & Karl J. Niklas

Nature 410, 655–660 (2001).
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Equation (1) of this Article was incorrect as printed. The total
biomass, MTot; per unit area is the summation, or integral, across
the size distribution of the number of individuals per unit area,
multiplied by their body mass. Thus MTot ¼

Ð
b
a MNðMÞdM: Because

the number of individuals in a given area is an allometric function
of their size, M, we can substitute the observed relationship N ¼
CmM23=4 to yield the community biomass equation:

MTot ¼

ðb

a

CmM1=4 ¼
4

5
Cm M5=4

a 2 M
5=4
b

� �
ð1Þ

This change does not affect any of the reported conclusions or
empirical patterns. A
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